更多>>精华博文推荐
更多>>人气最旺专家

冈本麻弥

领域:商界网

介绍:往往以近期信息报送任务比较重或正在赶写材料为理由,不能自觉主动抽时间静下心学习,利用工作空闲和业余时间学习也比较少。...

刘金刚

领域:腾讯健康

介绍: 二元一次不等式(组)与平面区域课后篇巩固探究                A组1.若不等式Ax+By+50表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是(  )≥-≤-解析由于不等式Ax+By+50表示的平面区域不包括点(2,4),所以2A+4B+5≥0,于是A+2B≥-,即k≥答案A2.图中阴影部分表示的区域对应的二元一次不等式组为(  )++y-解析取原点O(0,0)检验,它满足x+y-1≤0,故异侧点应满足x+y-1≥0,排除B,D.点O的坐标满足x-2y+2≥0,排除C.故选A.答案A3.若点P14,a在0≤,,3解析由题意,知12≤a≤1答案A4.不等式(x+2y-2)(x-y+1)≥0表示的平面区域是(  )解析不等式(x+2y-2)(x-y+1)≥0等价于x+2y答案A5.在平面直角坐标系中,若不等式组x+y-1≥0,x-A.-解析图中的阴影部分即为满足x-1≤0与x+y-1≥0的平面区域,而直线ax-y+1=0恒过点(0,1),故可看作直线绕点(0,1)旋转.当a=-5时,满足题意的平面区域不是一个封闭区域;当a=1时,满足题意的平面区域的面积为1;当a=2时,满足题意的平面区域的面积为;当a=3时,满足题意的平面区域的面积为2.故选D.答案D6.不等式组2x-y解析该不等式组表示的平面区域是一个直角三角形及其内部,其面积等于×3×6=9.答案97.若点(1,2)与点(-3,4)在直线x+y+a=0的两侧,则实数a的取值范围是     .解析由题意,得(1+2+a)(-3+4+a)0,解得-3a-1.故实数a的取值范围是(-3,-1).答案(-3,-1)8.若不等式组x-y≥0,2解析不等式组x-y≥0,2x+y≤2,y≥0表示的平面区域如图中的阴影部分所示,画出直线x+y=0,并将其向右上方平行移动,直至直线过点(1,0),均满足题意,此时0a≤1;将其再向右上方平移,原不等式组所表示的平面区域就不能构成三角形了,直至直线经过点A2答案0a≤1或a≥9.画出以A(3,-1),B(-1,1),C(1,3)为顶点的△ABC的区域(包括边界),并写出该区域所表示的二元一次不等式组.解如图所示,直线AB,BC,CA所围成的区域就是所要画的△ABC的区域,其中直线AB,BC,CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),将其代入x+2y-1,得1+2×1-1=2代入x-y+2,得1-1+2代入2x+y-5,得2×1+1-50.又所画区域包括边界,所以该区域所表示的二元一次不等式组为10.导学号04994072在平面直角坐标系中,求不等式组y≥x-解原不等式组可化为y上述不等式组表示的平面区域如图阴影部分所示,则△ABC的面积即为所求.易知点B的坐标为12,-12,点C的坐标为(所以S△ABC=S△ADC+S△ADB=×2×1+×2×12B组1.不等式(x-2y+1)(x+y-3)≤0在直角坐标平面内表示的区域(阴影部分)是下列图形中的(  )解析∵(x-2y+1)(x+y-3)≤0,∴x-2答案C2.二元一次不等式组解析不等式组表示的平面区域如图中阴影部分所示,易知图中阴影部分有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2),故选B.答案B3.若不等式组x-y+5≥0,yA.(-∞,5)B.[7,+∞)C.[5,7)D.(-∞,5)∪[7,+∞)解析作出不等式组x-y+5≥0,0≤x答案A4.如图,四条直线x+y-2=0,x-y-1=0,x+2y+2=0,3x-y+3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组       表示.解析点(0,0)在该平面区域内,点(0,0)和平面区域在直线x+y-2=0的同侧,把(0,0)代入x+y-2,得0+0-20,所以对应的不等式为x+y-20.同理可得其他三个相应的不等式为x+2y+20,3x-y+30,x-y-10.故所求不等式组为3答案35.若直线y=kx+1将不等式组x-y+2≥0,x解析不等式组表示的平面区域如图中阴影部分所示,△ABC是等腰直角三角形,且BC⊥x轴,A(-1,1).直线y=kx+1经过点(0,1),要使直线将△ABC的面积等分,则k=0.答案06.画出不等式|x|+|y|≤1利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅

利来国际w66娱乐平台
本站新公告利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅
ipl | 2019-03-21 | 阅读(803) | 评论(378)
体毛有很好的保温作用。【阅读全文】
利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅
mdo | 2019-03-21 | 阅读(621) | 评论(527)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
7de | 2019-03-21 | 阅读(378) | 评论(659)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
ykj | 2019-03-21 | 阅读(977) | 评论(210)
可是有一个区别,在欧洲,有一种发明,马上就生气勃勃地发展成为一种奇妙有用的东西,而在中国却依然停滞在胚胎状态,无声无息。【阅读全文】
6ws | 2019-03-21 | 阅读(704) | 评论(100)
在具体工作中,个人利益永远服从于党和人民的利益,努力为群众排忧解难,使自己的一言一行都要从先进党员的良好形象出发。【阅读全文】
p6a | 2019-03-20 | 阅读(173) | 评论(798)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
taw | 2019-03-20 | 阅读(767) | 评论(222)
2、GB50838-2015第条,敷设电力电缆的舱室,逃生口间距不宜大于200m。【阅读全文】
ro7 | 2019-03-20 | 阅读(395) | 评论(442)
由图1可知,我国执行计划生育政策后,开始人口自然增长率波动变化,然后持续下降,但始终大于4‰,说明人口规模是持续增加的。【阅读全文】
利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅,利来娱乐国际ag旗舰厅
xof | 2019-03-20 | 阅读(170) | 评论(447)
未划线价格:未划线的价格可能是商品即将参加活动的活动价,仅供参考,具体活动时的成交价可能因用户使用优惠券等发生变化,最终以活动是订单结算页价格为准。【阅读全文】
wst | 2019-03-19 | 阅读(839) | 评论(280)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
6ql | 2019-03-19 | 阅读(641) | 评论(770)
在学术研究方面获得的成功,以及对中国历史文化研究非凡的成就,使梁启超成为享誉海内外的著名学者。【阅读全文】
ern | 2019-03-19 | 阅读(928) | 评论(149)
大凡文明进步,地价日涨。【阅读全文】
4yp | 2019-03-19 | 阅读(672) | 评论(725)
你知道哪些食物一起吃更有营养吗?+土豆营养丰富,但含有微量的有毒物质龙葵素,加入醋,则可以有效地分解有毒物质+洋葱中含有丰富的维生素C,能够防止火腿中的亚硝酸盐在人体内转化为亚硝酸胺+*1、《食品安全法》自2009年哪一天正式实施?()A、5月1号B、6月1号C、2月1号D、10月1号B*2、《食品安全法》中规定,不能销售和购买“三无产品”,那么下面哪种不属于“三无食品”?()A、没有商标的食品B、没有生产日期的食品C、没有厂址的食品D、没有保质期的食品D*3、豆浆又叫“植物奶”,被国际营养协会评定为健康食品和世界六大营养饮料之一。【阅读全文】
v5g | 2019-03-18 | 阅读(119) | 评论(932)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
lx5 | 2019-03-18 | 阅读(195) | 评论(569)
(例如、就收捡购物车篮说看起是一项最简单的劳动岗位,实际上这个岗位的任务也有很多,除收捡购物车篮外,还要替换其它岗位的临时活动、随时监视员工的纪律、观察卖场的各种现象等等。【阅读全文】
共5页

友情链接,当前时间:2019-03-21

w66.利来国际 利来国际老牌博彩 利来国际官方网站 利来娱乐老牌 利来娱乐帐户
利来ag旗舰厅手机版 利来娱乐帐户 利来娱乐国际 利来国际真人娱乐 利来国际娱乐
利来国际w66最新 w66利来娱乐公司 利来娱乐w66 wwww66com利来 利来国际最给力老牌
w66.cm利来国际 利来国际旗舰厅 利来国际备用 利来国际备用 利来国际最给利的老牌
海丰县| 同心县| 于田县| 江口县| 平南县| 利辛县| 鄂尔多斯市| 营山县| 南川市| 镇远县| 林周县| 泸州市| 扶沟县| 泰宁县| 东乌| 博爱县| 江阴市| 建德市| 馆陶县| 嘉定区| 西安市| 九龙县| 乌拉特中旗| 鄯善县| 启东市| 五河县| 瑞昌市| 志丹县| 根河市| 乌鲁木齐县| 前郭尔| 高邑县| 郧西县| 八宿县| 南宁市| 元谋县| 德惠市| 合水县| 洛南县| 呼伦贝尔市| 盖州市| http://m.55506332.cn http://m.91865916.cn http://m.34133341.cn http://m.26010107.cn http://m.14461824.cn http://m.44623279.cn